9857 independent reflections

 $R_{\rm int} = 0.087$

6012 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(1,10-phenanthroline)(2,2,6,6-tetramethylheptane-3,5-dionato)potassium(I) benzene sesquisolvate

Dmitry M. Tsymbarenko,^a Igor E. Korsakov,^a* Andrey R. Kaul,^a Erhard Kemnitz^b and Sergey I. Troyanov^a

^aDepartment of Chemistry, Moscow State University, Russian Federation, and ^bInstitute of Chemistry, Humboldt University of Berlin, Germany Correspondence e-mail: korsakov@inorg.chem.msu.ru

Received 10 July 2007; accepted 17 July 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.066; wR factor = 0.126; data-to-parameter ratio = 21.2.

The title compound, $[K(C_{11}H_{19}O_2)(C_{12}H_8N_2)_2]\cdot 1.5C_6H_6$, is a potassium heteroligand β -diketonate complex with a mononuclear molecular structure in which a K⁺ cation is coordinated by a dipivaloylmethanate anion (2,2,6,6-tetramethylheptane-3,5-dionate, dpm) and two 1,10-phenanthroline (phen) molecules as bidentate ligands. The coordination number (CN) of K in the K(dpm)(phen)₂ molecule is 6 and the coordinating atoms form a distorted trigonal prism. Face-toface stacking interactions between phen ligands of neighbouring molecules [with perpendicular separations of 3.48 (5) Å] cause them to associate into chains along the [001] direction. The benzene solvent molecules in the structural cavities are edge-to-face stacked with the phen ligands.

Related literature

For background information, see: Romanov *et al.* (2004); Murzina *et al.* (2006). For related crystal structures, see: Bombieri *et al.*, (1984); Soboleva *et al.* (1995); Minacheva *et al.* (2003); Rogachev *et al.* (2005). For related literature, see: Dance (2003).

Experimental

Crystal data

$[K(C_{11}H_{19}O_2)(C_{12}H_8N_2)_2] \cdot 1.5C_6H_6$	$V = 3832.5 (13) \text{ Å}^3$
$M_r = 699.93$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 10.110 (2) Å	$\mu = 0.18 \text{ mm}^{-1}$
b = 22.419(5) Å	T = 100 (2) K
c = 17.099 (3) Å	$0.50 \times 0.30 \times 0.20 \text{ mm}$
$\beta = 98.55$ (3)°	
,	

Data collection

Stoe IPDS diffractometer Absorption correction: none 26291 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	466 parameters
$vR(F^2) = 0.126$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
9857 reflections	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

K-O2	2.6051 (16)	K-N1	2.866 (2)
K-01	2.6946 (15)	K-N4	2.8749 (19)
K-N2	2.852 (2)	K-N3	2.890 (2)
O2 - K - O1	66.14 (5)	N4-K-N3	56.63 (6)
N2-K-N1	57.30 (5)		

Data collection: *IPDS* (Stoe & Cie, 1996); cell refinement: *IPDS*; data reduction: *IPDS*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Bergerhoff *et al.*, 1996); software used to prepare material for publication: *publCIF* (Version 1.0c; Westrip, 2007).

Financial support from the Russian Foundation for Basic Research (project Nos. 04-03-32670 and 07-03-01136) is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2459).

References

- Bergerhoff, G., Berndt, M. & Brandenburg, K. (1996). J. Res. Natl Inst. Stand. Technol. 101, 221–225.
- Bombieri, G., Bruno, G., Grillone, M. D. & Polizzotti, G. (1984). Acta Cryst. C40, 2011–2014.
- Dance, I. (2003). CrystEngComm, 5, 208-221.
- Minacheva, L. Kh., Rogachev, A. Yu., Kuz'mina, N. P. & Sergienko, V. S. (2003). Zh. Neorg. Khim. (Russ. J. Inorg. Chem.), 48, 1978–1986.
- Murzina, T., Savinov, S., Ezhov, A., Aktsipetrov, O., Korsakov, I., Bolshakov, I. & Kaul, A. (2006). Appl. Phys. Lett. 89, 062907.
- Rogachev, A. Yu., Minacheva, L. Kh., Sergienko, V. S., Malkerova, I. P., Alikhanyan, A. S., Stryapan, V. V. & Kuzmina, N. P. (2005). *Polyhedron*, 24, 723–729.
- Romanov, M., Korsakov, I., Kaul, A., Bolshakov, I., Stefanovich, S. & Wahl, G. (2004). Chem. Vap. Deposition, 10, 318–324.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Soboleva, I. E., Troyanov, S. I., Kuz'mina, N. P., Ivanov, V. K., Martynenko, L. I. & Struchkov, Yu. T. (1995). Koord. Khim. (Coord. Chem.), 21, 688–693.

Stoe & Cie (1996). *IPDS Software*. Stoe & Cie, Darmstadt, Germany. Westrip, S. P. (2007). *publCIF*. In preparation.

Acta Cryst. (2007). E63, m2195 [doi:10.1107/S1600536807034988]

Bis(1,10-phenanthroline)(2,2,6,6-tetramethylheptane-3,5-dionato)potassium(I) benzene sesquisolvate

D. M. Tsymbarenko, I. E. Korsakov, A. R. Kaul, E. Kemnitz and S. I. Troyanov

Comment

Metal β -diketonates (especially acetylacetonates and dipivaloylmethanates) are widely used as volatile precursors for MOCVD deposition of thin films. In order to obtain a volatile precursor one should synthesize a substance with molecular crystal structure and low inter-molecular interactions. This task has not been solved yet for potassium, a large single charged cation that forms usually ionic crystals. Unfortunately, the coordination sphere of potassium (also Alkali Earth and Rare Earth elements) is not saturated by only the β -diketonate anion. This leads to the polymerization due to bridging function of ligands or solvent molecules and therefore to the reduction of volatility. A potassium precursor is essential for MOCVD of ferroelectric KNbO₃ thin films (Romanov *et al.*, 2004, Murzina *et al.*, 2006). We report here the first potassium heteroligand β -diketonate complex with a mononuclear structure K(dpm)(phen)₂·1.5C₆H₆.

The crystal structure is built by the packing of voluminous $K(dpm)(phen)_2$ molecules and solvate benzene molecules lying in the lattice cavities. In the $K(dpm)(phen)_2$ molecule, the potassium cation has a distorted trigonal-prismatical coordination (CN=6) formed by four nitrogen atoms from two chelating phenanthroline ligands and by two oxygen atoms from chelating dipivaloylmethanate-anion (Fig. 1). The ligands do not exhibit a bridging function, therefore the molecules are monomeric and the compound has a molecular structure. The K···O1 and K···O2 distances are similar because of electron density delocalization in the chelating part of the dpm⁻-anion. The K⁺ ion is displaced from the planes of the phenanthroline ligangs by 0.80 (1) Å. The K···N distances are comparable with those found in $[K_2(phen)_6]^{2+}[BPh_4]^-_2$ (Bombieri *et al.*, 1984).

The phenanthroline molecules lie in nearly orthogonal planes and participate in intermolecular stacking interaction of the face-to-face type with the neighboring K(dpm)(phen)₂ molecules (Fig. 2). No intramolecular stacking interaction similar to that found in $[K_2(phen)_6]^{2+}[BPh_4]^-_2$ (Bombieri *et al.*, 1984) occurs in the title crystal structure. The distance between parallel planes of phen-ligands (3.48 (5) Å) is typical for stacking distances in related compounds like Ba(dpm)₂(phen)₂ (Soboleva *et al.*, 1995) or La(dpm)₃(phen) (Minacheva *et al.*, 2003) or La(hfa)₃(phen)₂ (Rogachev *et al.*, 2005). The stacking interaction between phen-ligands of neighboring molecules causes their association with the formation of chains along [001] direction. The solvate benzene molecules are edge-to-face stacked with phenanthroline ligands, while the molecular centroid separations are 4.9 - 5.2 Å, being in a good agreement with the values observed for the stacking interaction in a benzene pair (C₆H₆)₂ (Dance, 2003).

Experimental

The potassium *tert*-butyloxide (0.192 g, 1.72 mmol) and 1,10-phenanthroline (0.619 g, 3.44 mmol) were dissolved in dried benzene (15 ml) and stirred at room temperature. Then the solution of dipivaloylmethane (2,2,6,6-tetramethylheptane-3,5-dione, 0.332 g, 1.80 mmol) in benzene (5 ml) was added slowly under continuous stirring of mixture. All operations were

performed in a glove box. X-ray quality single-crystals were obtained by slow evaporation of benzene solution in evacuated sealed ampoules during two months.

Refinement

H-atoms were placed in idealized positions and refined using a riding model with C—H = 0.95 Å (or 0.98 Å) and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of $K(dpm)(phen)_2$, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. The crystal unit cell of $K(dpm)(phen)_2 \cdot 1.5C_6H_6$ viewed along the *a* axis, showing the stacking interaction between phen-ligands from the neighboring molecules of $K(dpm)(phen)_2$. H atoms were omitted for clarity.

Bis(1,10-phenanthroline)(2,2,6,6-tetramethylheptane-3,5-dionato)potassium(I) benzene sesquisolvate

Crystal data

$[K(C_{11}H_{19}O_2)(C_{12}H_8N_2)_2]$ ·1.5C ₆ H ₆	$F_{000} = 1484$
$M_r = 699.93$	$D_{\rm x} = 1.213 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 11312 reflections
a = 10.110 (2) Å	$\theta = 4-29^{\circ}$
b = 22.419 (5) Å	$\mu = 0.18 \text{ mm}^{-1}$
c = 17.099 (3) Å	T = 100 (2) K
$\beta = 98.55 \ (3)^{\circ}$	Block, colourless
$V = 3832.5 (13) \text{ Å}^3$	$0.50\times0.30\times0.20\ mm$
Z = 4	

Data collection

Stoe IPDS diffractometer	6012 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.087$

Monochromator: graphite	$\theta_{\rm max} = 29.2^{\circ}$
T = 100(2) K	$\theta_{\min} = 3.4^{\circ}$
φ scans	$h = -13 \rightarrow 10$
Absorption correction: none	$k = -30 \rightarrow 30$
26291 measured reflections	$l = -20 \rightarrow 22$
9857 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.126$	$w = 1/[\sigma^2(F_0^2) + (0.05P)^2 +]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{max} < 0.001$
9857 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
466 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
K	0.15866 (5)	0.739467 (18)	0.81820 (3)	0.01858 (11)
01	0.07787 (15)	0.62510 (6)	0.82200 (9)	0.0186 (3)
O2	0.35426 (16)	0.66272 (6)	0.83782 (10)	0.0243 (4)
N1	0.1315 (2)	0.81523 (7)	0.68171 (12)	0.0213 (4)
N2	-0.06129 (19)	0.73100 (7)	0.69319 (12)	0.0207 (4)
N3	0.27796 (19)	0.78168 (7)	0.97236 (12)	0.0210 (4)
N4	0.0723 (2)	0.84560 (7)	0.89032 (12)	0.0235 (4)
C1	-0.0546 (2)	0.53894 (9)	0.90463 (15)	0.0231 (5)
H1A	-0.1196	0.5070	0.9083	0.035*
H1B	-0.1022	0.5762	0.8893	0.035*
H1C	0.0014	0.5442	0.9561	0.035*
C2	0.0337 (2)	0.52239 (8)	0.84243 (14)	0.0179 (4)

C3	0.1318 (2)	0.57547 (8)	0.83721 (13)	0.0161 (4)
C4	0.2711 (2)	0.56481 (8)	0.85082 (14)	0.0191 (5)
H4	0.2992	0.5248	0.8611	0.023*
C5	0.3723 (2)	0.60814 (8)	0.85059 (14)	0.0183 (4)
C6	0.5213 (2)	0.58812 (9)	0.86698 (16)	0.0240 (5)
C7	0.5438 (3)	0.52337 (13)	0.8882 (3)	0.0878 (17)
H7A	0.5089	0.4985	0.8426	0.132*
H7B	0.4972	0.5135	0.9329	0.132*
H7C	0.6398	0.5160	0.9029	0.132*
C8	0.5829 (4)	0.6024 (3)	0.7945 (3)	0.1001 (18)
H8A	0.6784	0.5925	0.8041	0.150*
H8B	0.5718	0.6450	0.7824	0.150*
H8C	0.5387	0.5789	0.7498	0.150*
C9	0.5923 (3)	0.62340 (17)	0.9365 (3)	0.0737 (13)
H9A	0.6868	0.6118	0.9466	0.111*
H9B	0.5506	0.6151	0.9836	0.111*
Н9С	0.5855	0.6661	0.9244	0.111*
C10	0.1010 (2)	0.46250 (9)	0.86561 (17)	0.0282 (6)
H10A	0.0324	0.4322	0.8695	0.042*
H10B	0.1584	0.4665	0.9168	0.042*
H10C	0.1552	0.4505	0.8253	0.042*
C11	-0.0556 (3)	0.51592 (10)	0.76224 (16)	0.0317 (6)
H11A	-0.0012	0.5031	0.7224	0.048*
H11B	-0.0974	0.5544	0.7466	0.048*
H11C	-0.1251	0.4861	0.7664	0.048*
C12	0.2269 (3)	0.85464 (9)	0.67433 (16)	0.0268 (5)
H12	0.2831	0.8672	0.7209	0.032*
C13	0.2496 (3)	0.87876 (9)	0.60206 (16)	0.0283 (6)
H13	0.3200	0.9065	0.6002	0.034*
C14	0.1695 (2)	0.86196 (9)	0.53437 (15)	0.0238 (5)
H14	0.1840	0.8773	0.4846	0.029*
C15	0.0645 (2)	0.82131 (8)	0.53949 (14)	0.0193 (5)
C16	0.0504 (2)	0.79856 (8)	0.61459 (13)	0.0167 (4)
C17	-0.0537 (2)	0.75454 (8)	0.62091 (14)	0.0180 (4)
C18	-0.1392 (2)	0.73712 (9)	0.55162 (14)	0.0211 (5)
C19	-0.2382 (2)	0.69438 (10)	0.55995 (16)	0.0268 (5)
H19	-0.2994	0.6820	0.5153	0.032*
C20	-0.2456 (2)	0.67086 (10)	0.63288 (16)	0.0280 (5)
H20	-0.3117	0.6420	0.6395	0.034*
C21	-0.1542 (2)	0.68994 (9)	0.69768 (15)	0.0254 (5)
H21	-0.1591	0.6725	0.7478	0.031*
C22	-0.0260 (2)	0.80299 (9)	0.47072 (14)	0.0231 (5)
H22	-0.0173	0.8193	0.4205	0.028*
C23	-0.1230 (2)	0.76289 (10)	0.47713 (14)	0.0237 (5)
H23	-0.1820	0.7515	0.4311	0.028*
C24	0.3764 (2)	0.75095 (10)	1.01334 (16)	0.0286 (6)
H24	0.4222	0.7227	0.9858	0.034*
C25	0.4175 (3)	0.75747 (12)	1.09456 (17)	0.0373 (7)
H25	0.4899	0.7346	1.1207	0.045*

C26	0.3527 (3)	0.79685 (12)	1.13567 (17)	0.0378 (7)
H26	0.3787	0.8017	1.1910	0.045*
C27	0.2462 (3)	0.83057 (10)	1.09509 (15)	0.0299 (6)
C28	0.2124 (2)	0.82164 (9)	1.01298 (14)	0.0208 (5)
C29	0.1039 (2)	0.85520 (9)	0.96913 (15)	0.0218 (5)
C30	0.0349 (3)	0.89660 (10)	1.01031 (17)	0.0306 (6)
C31	-0.0709 (3)	0.92863 (10)	0.9654 (2)	0.0420 (8)
H31	-0.1204	0.9569	0.9906	0.050*
C32	-0.1018 (3)	0.91895 (11)	0.8863 (2)	0.0430 (8)
H32	-0.1726	0.9402	0.8556	0.052*
C33	-0.0270 (3)	0.87695 (10)	0.85130 (18)	0.0336 (6)
H33	-0.0488	0.8705	0.7960	0.040*
C34	0.1722 (3)	0.87284 (12)	1.13465 (17)	0.0399 (7)
H34	0.1947	0.8788	1.1900	0.048*
C35	0.0715 (3)	0.90404 (11)	1.09369 (19)	0.0417 (8)
H35	0.0234	0.9317	1.1208	0.050*
C36	0.4871 (3)	0.85637 (12)	0.85390 (18)	0.0366 (6)
H36	0.4323	0.8620	0.8938	0.044*
C37	0.5279 (3)	0.90462 (12)	0.8136 (2)	0.0456 (8)
H37	0.5013	0.9437	0.8258	0.055*
C38	0.6068 (3)	0.89627 (16)	0.7558 (2)	0.0589 (10)
H38	0.6328	0.9296	0.7274	0.071*
C39	0.6488 (3)	0.83982 (17)	0.7386 (2)	0.0526 (9)
H39	0.7054	0.8343	0.6995	0.063*
C40	0.6082 (3)	0.79190 (14)	0.77838 (19)	0.0448 (7)
H40	0.6362	0.7529	0.7665	0.054*
C41	0.5269 (3)	0.79958 (12)	0.83556 (17)	0.0364 (6)
H41	0.4983	0.7660	0.8624	0.044*
C42	0.4839 (3)	0.95220 (12)	1.0482 (2)	0.0540 (9)
H42	0.4730	0.9190	1.0812	0.065*
C43	0.3789 (3)	0.97211 (11)	0.9961 (2)	0.0485 (9)
H43	0.2944	0.9531	0.9934	0.058*
C44	0.3940 (3)	1.02007 (13)	0.9467 (3)	0.0586 (10)
H44	0.3206	1.0335	0.9097	0.070*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
K	0.0224 (2)	0.01534 (17)	0.0169 (3)	0.00253 (18)	-0.00066 (17)	-0.00038 (18)
01	0.0193 (8)	0.0167 (6)	0.0203 (9)	0.0024 (6)	0.0049 (6)	0.0020 (6)
O2	0.0182 (8)	0.0173 (7)	0.0370 (11)	0.0016 (6)	0.0024 (7)	0.0033 (6)
N1	0.0246 (11)	0.0176 (8)	0.0207 (12)	0.0001 (7)	-0.0005 (8)	-0.0001 (7)
N2	0.0203 (10)	0.0195 (8)	0.0220 (12)	0.0001 (7)	0.0027 (8)	0.0017 (7)
N3	0.0237 (10)	0.0223 (8)	0.0167 (12)	-0.0040 (7)	0.0026 (8)	0.0025 (7)
N4	0.0255 (11)	0.0196 (8)	0.0249 (13)	-0.0003 (7)	0.0021 (8)	0.0003 (7)
C1	0.0178 (11)	0.0241 (10)	0.0290 (15)	-0.0024 (9)	0.0092 (10)	0.0015 (9)
C2	0.0191 (11)	0.0162 (9)	0.0195 (13)	-0.0024 (8)	0.0061 (9)	0.0005 (8)
C3	0.0183 (11)	0.0182 (9)	0.0130 (12)	-0.0008 (8)	0.0063 (8)	-0.0002 (7)

C4	0.0210 (11)	0.0127 (8)	0.0245 (14)	0.0036 (8)	0.0065 (9)	0.0011 (8)
C5	0.0187 (11)	0.0196 (9)	0.0175 (13)	0.0029 (8)	0.0051 (9)	0.0005 (8)
C6	0.0141 (11)	0.0207 (10)	0.0375 (16)	0.0022 (8)	0.0049 (10)	0.0026 (9)
C7	0.0196 (16)	0.0328 (15)	0.205 (5)	0.0059 (12)	-0.004 (2)	0.023 (2)
C8	0.038 (2)	0.198 (5)	0.073 (3)	0.058 (3)	0.037 (2)	0.062 (3)
C9	0.0305 (18)	0.081 (2)	0.100 (3)	0.0238 (17)	-0.0241 (19)	-0.042 (2)
C10	0.0239 (13)	0.0173 (9)	0.0453 (18)	0.0005 (9)	0.0116 (11)	0.0050 (9)
C11	0.0427 (16)	0.0267 (11)	0.0250 (16)	-0.0116 (11)	0.0027 (12)	-0.0003 (9)
C12	0.0276 (13)	0.0194 (10)	0.0309 (16)	-0.0043 (9)	-0.0038 (11)	-0.0031 (9)
C13	0.0256 (13)	0.0190 (10)	0.0403 (17)	-0.0012 (9)	0.0046 (11)	0.0047 (9)
C14	0.0247 (12)	0.0204 (10)	0.0282 (15)	0.0072 (9)	0.0099 (10)	0.0074 (9)
C15	0.0207 (12)	0.0166 (9)	0.0210 (14)	0.0056 (8)	0.0049 (9)	0.0011 (8)
C16	0.0152 (11)	0.0156 (8)	0.0194 (13)	0.0043 (7)	0.0027 (9)	0.0003 (8)
C17	0.0176 (11)	0.0172 (9)	0.0194 (13)	0.0061 (8)	0.0036 (8)	0.0001 (8)
C18	0.0203 (11)	0.0217 (9)	0.0208 (13)	0.0055 (9)	0.0009 (9)	-0.0031 (9)
C19	0.0186 (12)	0.0290 (11)	0.0314 (16)	-0.0012 (9)	-0.0011 (10)	-0.0074 (10)
C20	0.0173 (12)	0.0293 (11)	0.0375 (17)	-0.0056 (9)	0.0047 (10)	0.0003 (10)
C21	0.0210 (12)	0.0266 (10)	0.0296 (16)	0.0004 (9)	0.0065 (10)	0.0039 (9)
C22	0.0279 (13)	0.0266 (10)	0.0156 (14)	0.0085 (9)	0.0058 (10)	0.0043 (8)
C23	0.0243 (12)	0.0271 (10)	0.0181 (13)	0.0070 (9)	-0.0019 (9)	-0.0033 (9)
C24	0.0242 (13)	0.0300 (12)	0.0310 (16)	-0.0031 (9)	0.0022 (10)	0.0086 (9)
C25	0.0310 (14)	0.0456 (14)	0.0316 (17)	-0.0126 (12)	-0.0077 (11)	0.0166 (12)
C26	0.0439 (17)	0.0471 (15)	0.0200 (16)	-0.0288 (13)	-0.0028 (12)	0.0033 (11)
C27	0.0368 (15)	0.0334 (12)	0.0204 (15)	-0.0224 (11)	0.0076 (11)	-0.0022 (10)
C28	0.0243 (12)	0.0198 (9)	0.0192 (14)	-0.0112 (8)	0.0060 (9)	-0.0022 (8)
C29	0.0238 (12)	0.0181 (9)	0.0251 (15)	-0.0084 (8)	0.0087 (10)	-0.0041 (8)
C30	0.0299 (14)	0.0248 (11)	0.0419 (18)	-0.0103 (10)	0.0210 (12)	-0.0102 (10)
C31	0.0318 (15)	0.0245 (12)	0.076 (3)	-0.0001 (11)	0.0271 (15)	-0.0089 (13)
C32	0.0308 (16)	0.0278 (12)	0.070 (3)	0.0064 (11)	0.0058 (15)	0.0025 (13)
C33	0.0321 (15)	0.0274 (11)	0.0398 (18)	0.0021 (10)	0.0003 (12)	0.0025 (10)
C34	0.060 (2)	0.0430 (14)	0.0216 (17)	-0.0269 (14)	0.0208 (14)	-0.0147 (12)
C35	0.056 (2)	0.0329 (13)	0.045 (2)	-0.0174 (13)	0.0366 (16)	-0.0201 (12)
C36	0.0315 (15)	0.0456 (14)	0.0315 (18)	-0.0009 (12)	0.0013 (12)	0.0012 (11)
C37	0.0307 (16)	0.0387 (14)	0.064 (2)	-0.0054 (12)	-0.0029 (15)	0.0056 (14)
C38	0.041 (2)	0.072 (2)	0.063 (3)	-0.0188 (16)	0.0051 (17)	0.0289 (18)
C39	0.0329 (18)	0.093 (3)	0.033 (2)	-0.0104 (17)	0.0060 (14)	-0.0017 (17)
C40	0.0405 (18)	0.0554 (17)	0.036 (2)	0.0009 (14)	-0.0015 (14)	-0.0138 (14)
C41	0.0383 (16)	0.0397 (13)	0.0287 (18)	-0.0027 (12)	-0.0033 (12)	0.0060 (11)
C42	0.0445 (19)	0.0283 (13)	0.093 (3)	-0.0069 (12)	0.0244 (19)	0.0141 (15)
C43	0.0297 (16)	0.0271 (12)	0.094 (3)	-0.0072 (11)	0.0253 (16)	-0.0026 (14)
C44	0.0370 (18)	0.0374 (15)	0.101 (3)	0.0001 (13)	0.0097 (19)	0.0148 (16)

Geometric parameters (Å, °)

К—О2	2.6051 (16)	C32—C33	1.397 (4)
K—O1	2.6946 (15)	C34—C35	1.344 (5)
K—N2	2.852 (2)	C36—C37	1.378 (4)
K—N1	2.866 (2)	C36—C41	1.385 (4)
K—N4	2.8749 (19)	C37—C38	1.372 (5)

K—N3	2.890 (2)	C38—C39	1.380 (5)
O1—C3	1.249 (2)	C39—C40	1.367 (5)
O2—C5	1.252 (2)	C40—C41	1.378 (4)
N1—C12	1.328 (3)	C42—C43	1.355 (5)
N1—C16	1.360 (3)	C42—C44 ⁱ	1.373 (4)
N2—C21	1.326 (3)	C43—C44	1.390 (4)
N2—C17	1.357 (3)	C44—C42 ⁱ	1.373 (4)
N3—C24	1.323 (3)	C1—H1A	0.98
N3—C28	1.364 (3)	C1—H1B	0.98
N4—C33	1.322 (3)	C1—H1C	0.98
N4—C29	1.355 (3)	С4—Н4	0.95
C1—C2	1.532 (3)	С7—Н7А	0.98
C2—C10	1.531 (3)	С7—Н7В	0.98
C2—C11	1.532 (3)	С7—Н7С	0.98
С2—С3	1.560 (3)	C8—H8A	0.98
С3—С4	1.413 (3)	С8—Н8В	0.98
C4—C5	1.412 (3)	С8—Н8С	0.98
C5—C6	1.557 (3)	С9—Н9А	0.98
C6—C8	1.501 (4)	С9—Н9В	0.98
C6—C7	1 505 (3)	C9—H9C	0.98
C6—C9	1 517 (4)	C10—H10A	0.98
C12—C13	1.399 (4)	C10—H10B	0.98
C13—C14	1 363 (4)	C10—H10C	0.98
C14—C15	1 411 (3)	C11—H11A	0.98
C15—C16	1.408 (3)	С11—Н11В	0.98
C15—C22	1.438 (3)	C11—H11C	0.98
C16—C17	1.458 (3)	C12—H12	0.95
C17—C18	1.414 (3)	С13—Н13	0.95
C18—C19	1.408 (3)	C14—H14	0.95
C18—C23	1.430 (3)	С19—Н19	0.95
C19—C20	1.366 (4)	C20—H20	0.95
C20—C21	1.400 (3)	C21—H21	0.95
C22—C23	1.346 (3)	C22—H22	0.95
C24—C25	1.397 (4)	С23—Н23	0.95
C25—C26	1.356 (4)	C24—H24	0.95
C26—C27	1.411 (4)	C25—H25	0.95
C27—C28	1.409 (3)	C26—H26	0.95
C27—C34	1.437 (4)	C31—H31	0.95
C28—C29	1.444 (3)	С32—Н32	0.95
C29—C30	1.410 (3)	С33—Н33	0.95
C30—C31	1.416 (4)	С34—Н34	0.95
C30—C35	1.428 (4)	С35—Н35	0.95
C31—C32	1.360 (5)		
O2—K—O1	66.14 (5)	C31—C32—C33	118.3 (3)
O2—K—N2	123.01 (5)	N4—C33—C32	124.1 (3)
O1—K—N2	75.49 (5)	C35—C34—C27	120.3 (3)
O2—K—N1	118.37 (6)	C34—C35—C30	121.5 (3)
O1—K—N1	126.21 (5)	C37—C36—C41	119.3 (3)
	· /		· /

N2—K—N1	57.30 (5)	C38—C37—C36	120.1 (3)
O2—K—N4	139.87 (6)	C37—C38—C39	120.6 (3)
01—K—N4	131.66 (6)	C40—C39—C38	119.3 (3)
N2—K—N4	97.12 (6)	C39—C40—C41	120.7 (3)
N1—K—N4	81.98 (6)	C40—C41—C36	120.0 (3)
O2—K—N3	83.86 (6)	$C43 - C42 - C44^{i}$	120.1 (3)
O1—K—N3	112.11 (5)	C42—C43—C44	120.5 (3)
N2—K—N3	151 44 (6)	$C42^{i}$ $C44$ $C43$	119 3 (3)
NI K N3	121.67 (5)	$C_{42} = C_{44} = C_{43}$	100
NA K N2	121.07 (3) 56.63 (6)	$C_2 = C_1 = H_1 R$	109
$C_{3} = C_{1} = K_{1}$	30.03(0)	$C_2 = C_1 = H_1 C_2$	110
$C_{5} = 0$	130.75(14) 120.17(14)		100
C_{3}	137.17(14)		109
C12 = N1 = C10	117.5(2)		109
CI2—NI—K	119.20 (10)		109
C10-N1-K	119.80 (15)	C3-C4-H4	117
$C_2I = N_2 = C_1 / C_2 $	117.4 (2)	C5-C4-H4	11/
С21—N2—К	118.88 (15)	С6—С/—Н/А	109
C17—N2—K	120.89 (14)	С6—С7—Н7В	109
C24—N3—C28	117.2 (2)	С6—С7—Н7С	109
C24—N3—K	119.45 (16)	H7A—C7—H7B	109
C28—N3—K	120.72 (15)	H7A—C7—H7C	109
C33—N4—C29	117.8 (2)	H7B—C7—H7C	110
C33—N4—K	118.67 (17)	С6—С8—Н8А	109
C29—N4—K	121.08 (14)	С6—С8—Н8В	109
C10-C2-C11	109.19 (19)	С6—С8—Н8С	109
C10-C2-C1	108.36 (18)	H8A—C8—H8B	110
C11—C2—C1	108.5 (2)	H8A—C8—H8C	109
C10—C2—C3	114.97 (18)	H8B—C8—H8C	110
C11—C2—C3	108.41 (18)	С6—С9—Н9А	110
C1—C2—C3	107.21 (16)	С6—С9—Н9В	109
O1—C3—C4	125.32 (18)	С6—С9—Н9С	110
O1—C3—C2	115.46 (18)	Н9А—С9—Н9В	109
C4—C3—C2	119.21 (17)	Н9А—С9—Н9С	109
C5—C4—C3	126.05 (18)	Н9В—С9—Н9С	109
O2—C5—C4	125.9 (2)	C2-C10-H10A	109
O2—C5—C6	115.19 (18)	C2—C10—H10B	109
C4—C5—C6	118.94 (17)	С2—С10—Н10С	109
C8—C6—C7	109.8 (3)	H10A—C10—H10B	110
C8—C6—C9	109.3 (3)	H10A—C10—H10C	109
C7—C6—C9	106.1 (3)	H10B—C10—H10C	110
C8—C6—C5	107 4 (2)	C2—C11—H11A	109
C7-C6-C5	115 4 (2)	C2—C11—H11B	109
C9—C6—C5	108.8 (2)	C2—C11—H11C	109
N1-C12-C13	123.9 (2)	H11A—C11—H11B	109
C14-C13-C12	119 2 (2)	H11A—C11—H11C	109
C_{13} C_{14} C_{15}	118.9(2)	H11B-C11-H11C	110
$C_{16} = C_{15} = C_{14}$	110.9(2) 1180(2)	$M_{1} C_{12} H_{12}$	118
$C_{16} - C_{15} - C_{17}$	110.0(2) 120.3(2)	C_{12} C_{12} H_{12}	118
C10-C13-C22	120.3 (2)	C15-C12	110

121.8 (2)	C12—C13—H13	120
122.69 (19)	C14—C13—H13	120
118.3 (2)	C13—C14—H14	121
119.0 (2)	C15-C14-H14	120
123.1 (2)	С18—С19—Н19	120
118.0 (2)	С20—С19—Н19	120
118.9 (2)	C19—C20—H20	120
117.3 (2)	C21—C20—H20	121
122.8 (2)	N2—C21—H21	118
119.9 (2)	C20-C21-H21	118
119.4 (2)	С15—С22—Н22	120
119.1 (2)	С23—С22—Н22	120
123.8 (2)	C18—C23—H23	119
120.4 (2)	С22—С23—Н23	119
121.6 (2)	N3—C24—H24	118
124.1 (3)	C25—C24—H24	118
119.3 (3)	С24—С25—Н25	120
119.1 (3)	С26—С25—Н25	120
117.9 (3)	С25—С26—Н26	120
119.8 (3)	С27—С26—Н26	120
122.3 (3)	C30—C31—H31	120
122.4 (2)	С32—С31—Н31	120
117.8 (2)	С31—С32—Н32	121
119.8 (2)	С33—С32—Н32	121
122.7 (2)	N4—C33—H33	118
118.8 (2)	С32—С33—Н33	118
118.5 (2)	С27—С34—Н34	120
116.9 (3)	С35—С34—Н34	120
120.1 (3)	С30—С35—Н35	119
123.0 (3)	С34—С35—Н35	119
120.1 (2)		
	121.8 (2) 122.69 (19) 118.3 (2) 119.0 (2) 123.1 (2) 118.0 (2) 118.9 (2) 117.3 (2) 122.8 (2) 119.9 (2) 119.4 (2) 119.4 (2) 120.4 (2) 121.6 (2) 124.1 (3) 119.3 (3) 119.3 (3) 119.1 (3) 117.9 (3) 122.3 (3) 122.4 (2) 117.8 (2) 119.8 (2) 122.7 (2) 118.8 (2) 118.8 (2) 118.5 (2) 116.9 (3) 120.1 (3) 120.1 (2)	121.8 (2) $C12-C13-H13$ 122.69 (19) $C14-C13-H13$ 118.3 (2) $C13-C14-H14$ 119.0 (2) $C15-C14-H14$ 123.1 (2) $C18-C19-H19$ 118.0 (2) $C20-C19-H19$ 118.9 (2) $C19-C20-H20$ 117.3 (2) $C21-C20-H20$ 122.8 (2) $N2-C21-H21$ 119.9 (2) $C20-C21-H21$ 119.4 (2) $C15-C22-H22$ 123.8 (2) $C18-C23-H23$ 120.4 (2) $C22-C23-H23$ 121.6 (2) $N3-C24-H24$ 124.1 (3) $C25-C24-H24$ 119.3 (3) $C24-C25-H25$ 117.9 (3) $C25-C26-H26$ 119.8 (3) $C27-C26-H26$ 122.3 (3) $C30-C31-H31$ 122.4 (2) $C33-C32-H32$ 119.8 (2) $C33-C32-H32$ 122.7 (2) $N4-C33-H33$ 118.8 (2) $C32-C33-H33$ 118.8 (2) $C32-C33-H33$ 118.5 (2) $C27-C34-H34$ 10.9 (3) $C35-C34-H34$ 10.9 (3) $C35-C34-H34$ 122.7 (2) $N4-C35-H35$ 123.0 (3) $C34-C35-H35$ 123.0 (3) $C34-C35-H35$ 120.1 (2) $C34-C35-H35$

Symmetry codes: (i) -x+1, -y+2, -z+2.

Fig. 1

